
ON ESTIMATING THE DEPENDENCE BETWEEN TWO POINT PROCESSES

BY

HANI DOSS

C%
TECHNICAL REPORT NO. 417

MAY 4, 1989I

Prepared Under Contract

N00014-86-K-0156 (NR-042-267)

For the Office of Naval Research

Heibert Solomon, Project Director

Reproduction in Whole or in Part is Permitted

for any purpose of the United States Government

Approved for public release; distribution unlimited.

DEPARTMENT OF STATISTICS 1 L1%
STANFORD UNIVERSITY ELECTE
STANFORD, CALIFORNIA 1w



1. INTRODUCTION AND SUMMARY.

Let (NANB) be a stationary bivariate point process on]R. This article is

concerned with statistical methods for discovering and quantifying an association

between the two processes from a realization A1 < A2 < ... <AnAP BI < B2 < ... < BnB over

a long period of time T. The paper is motivated by certain problems that arise in

neurophysiology, which are very briefly described as follows (for further details see

e.g. Bryant, Ruiz Marcos, and Segundo, 1973).

Two neurons. A and B, are monitored over a period of time T during which each

neuron fires a sequence of impulses. The problem is to determine whether or not the

impulse times are associated. An association between N A and N B may be construed as

evidence that either the two neurons are communicating, or that they both share input

from a third source.

Another problem arises in certain neurophysiological studies of learning and

memory. An animal is to be taught (trained) to perform a certain task. Now consider

two "connected" neurons, A and B, which are essential in the performance of this task.

Record the impulse times during a period before the learning experience, obtaining a
Bef Be f.

realization of (N ef ,NB ), and during a period of time weZ after the learning
oAft. Aft. Bef.

experience, obtaining a realization of (NA ,NB ). The processes N A and

NBe£. may be dependent. The problem is to determine whether or not this dependenceB
is "stronger" for the processes NAft. and NB  . A neurophysiologist may consider

a change in the strength of the dependence as evidence that learning has taken place.

The two problems have very different statistical character. Let S be a statistic

that "measures" the dependence between two point processes. The first problem is

one of testing the hypothesis that N A and N B are independent, and requires only

knowledge of the distribution of S under the assumption that NA and NB are independent.

The second problem is much more difficult: to compare S across two situations we must

know the distribution of S when the two point processes are dependent.
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In a more general context, Ripley (1976,1977) introduced a measure K, defined

on an appropriate space, that summarizes the second-order properties of the process.

Before describing this measure, we need to state some assumptions and introduce some

notation. Let Ni (s,t) denote the number of events of type i occurring in the interval

(s,t], for i = A, B. Assume that each process has no multiple occurrences, and that

the intensities

X lir L P(Ni(t,t+h) > 0} for i = A, B (1)

are finite. (The existence of these limits was proved by Khintchine, 1960). The

X Is then have an interpretation as mean number of occurrences per unit of time: for

tI < t2'

E Ni(tl,t 2) = 'i(t2-tl) for i = A, B (2)

(this follows from Dobrushin's Lemma and Korolyuk's Theorem; see Leadbetter, 1968).

We now give an informal description of the measure K, adapted to the present

context.

The measure K is defined on the Borel subsets of R, and for t1 <t 2, writing

K(tl,t 2) for K{(tl,t 2)}, we have

'~tlt 2)-- A E{NA(tI't 2)Ia B point at t=0}

A

(3)

AB E{NB(-t 2 ,-tl) an A point at t=O)1

Note that if NA and NB are independent, then

K(tlot 2 ) = '2 - 'l- (4) J

regardless of the values X and X . -

Ripley proposed the estimate of K(tj,t 2) given by

nB nA
K(tl1 t2) N: N I I I(A.-B. E (tt2)} Cod.s __

A B i=l j=1 Code's (5
,/or

:Dist Special
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where I{.} denotes the indicator function (actually, the estimate proposed by Ripley

has an edge correction for points near the boundary of the period of observation; this

edge correction will not concern us).

Previous work on the estimator i is concerned with spatial processes. The

results center on using 9 to test that a single process in Poisson (Ripley, 1977;

Chapter 8 of Ripley, 1981; Silverman, 1976) and on using K to test for independence

of two processes (Lotwick and Silverman, 1982; Diggle and Milne, 1983).

In this paper we study the asymptotic properties of K(tlt 2). The main result

is that under certain regularity conditions, as nB a*

-. d. 2A B (K(t 1 ,t 2) -K(t 1 ,t 2 )) N(O,a (tl,t 2)), (6)

where
a2(tlt 2) may be consistently estimated from the data. (7)

Besides providing the basis for a test of independence between NA and NB, (6) and

(7) enable one to test whether or not K(tl,t 2) has changed in the experimental situ-

ation described earlier.

The cross-intensity function defined by

AAB (u) = lim 1
A2 P{NA(u+tu+t+hl) > 0; NB(t,t+h2) } (8)

h -h 10 1 2

is related to K by

AjAB 1 A (u) du (9)kA AB t AB

Under the independence hypothesis, AAB = A A Brillinger (1976) considered the random

function

T nB nA
AB(u) I= I{Aj-B i E (u-h,u+h)} (10)

izi j=1

and showed that under suitable regularity, if h-0 and T- - in such a way that hT
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T TT', T T
remains constant, then for uk'uk, Iuk uk >2h, lsk<k4sM, JAB(uk) are asymptoti-

cally independent Poisson random variables with means 2hT XAB(uk), for k= 1, ... , M.

JT (u)
Thus, IABM= T can be used to estimate XAB(u) at a finite number of points.

~(u) 2hT
A

In practice one would graph the two functions XAB and K over a finite range, say

[-L,L] (i.e. graph R(-L,t) for -L 5t:<L). Although from a mathematical viewpoint

AAB and K contain essentially the same information, the statistical properties of

their estimates are quite different: estimation of XAB is akin to estimating a den-

Isity, and from Brillinger's result the variance of 1AB is of the order -T; on the

other hand, estimation of K is akin to estimating a distribution function, and

from (6), the variance of K is of the smaller order -. A graph of XAB may,

however, indicate features (spikes, location of maxima and minima, etc.) that cannot

be seen in the graph of K. Clearly the two approaches are complementary.

2. ASYMPTOTIC DISTRIBUTION OF THE K-FUNCTION.

Let

UAB(tl,t 2) = E{NA(tl,t 2 ) a B point at t=O}. (11)

We may estimate UAB(tl,t 2) by

n B nA

UAB (tt2 nB i=l j=II{A - Bi  (tl,t} (12)

Letting
-n. for i = A, B (13)

we note that

K(tl,t 2) = 7- UAB(tl,t2, and K(tl,t 2) = -- UAB(tl,t 2). (14)
A A

To prove asymptotic normality of K (Theorem 2) we will prove joint asymptotic

normality of (0UAB(tl,t 2), A We will in fact find it necessary to first prove
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joint asymptotic normality of (4Ae(tl,t2), A/XB, 1/8). The delta-method (i.e. a

first term Taylor expansion) applied to the function f(x,y,z) = _ then yields the
y

asymptotic normality of K(tlt 2). We also obtain the joint asymptotic normality of

(UAB(tlt 2)1 XA' XB) by applying the delta-method to the function g(x,y,z)= (x,y/z,l/z).

We now need to give the statistical setting of our asymptotic investigation. The

functions UAB(tlt 2) and K(tl,t 2) involve the notion of the Palm measure. That is

for e > 0, we consider the conditional distribution of the process (NA,NB) given that

there is a B point in the interval (0,c), and take the limiting distribution of

(NA,NB) as e-0. Intuitively, this corresponds to selecting a B point "arbitrarily",

and considering the process with that point labeled the origin. This notion is

discussed for univariate processes by Leadbetter (1972) and for bivariate point

processes by Wisniewski (1972). We will assume that the process is observed during

a period of length T starting immediately after the occurrence of an "arbitrary" B

point, say B0 (thus, we will be working with the Palm measure). This mode of sampling

is called semisynchronous sampling by Cox and Lewis (1972); see Wisniewski (1972) for

some fundamental properties related to it. Also, for the sake of convenience, we

will assume that the period of observation ends with a B point.
80

Let F 8 denote the a-field generated by the events

{Bk (oV'oW)'" km O +v m  Bo +w);
kB e(B + v , B+ W ) .Bk E(B 10 1km 0  M.0 M)

NA(B0+rl, B0 + sI) =h i, ..., NA(B0+rn, B0 + sn) =hn}

for v <w <, k. = -1, -2, ... , i= , ...,m; r <s.0, h =0, 1, 2, ...,j=1,fo i  1 . .. ., J J j ,. .,, . .

n, and m and n nonnegative integers. For u>0, let F= denote the a-field generated0+u
B0 +

by the events

{Bk 1 (B0 +vI B0 +wl)' " 1) Bk k (BO + vm J B 0 + wn);

NA(Bo+rl, Bo+S I) =h I, ..., NA(Bo+rn, Bo+Sn) =hn)
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for usvi <wi, ki =1, 2, ... , i=l, ... , m; u:rj<sj, hj=O, 1, 2, ... , j=1, n..,

and m and n nonnegative integers.

Let Bo

c(u) = sup{IP(E1nE2) - P(E1) P(E2)l ; E1  F , E2 C Fo } (15)

If a(u) -0 as u- -, then the distant future is virtually independent of the past.

We will actually need stronger conditions on a(.) .

Let B> 0, n> , O<t < I be any constants satisfying

- > 1 (16)

Assumptions:

Al f [(t)]T t8  dt < ®
0

A2 sup E ENB(j,j+I)]nJ a B point at t=0} = M <
-W<j <m

A3 E [NA(tlt 2) a B point at t=0} < C

A4 E (BI - B) <i1

AS E LNA(BO,B1 4 (1+i < cc

These assumptions are discussed towards the end of this section.

THEOREM 1. Assume Al and A2. Let UAB(th,t2), UAB(tl,t 2 ), and for i =A, B be

defined by (11), (12), and (13), respectively.

(i) Under A3, we have as nB -

-nB (6AB(tl,t 2 )- UAB(tl,t2)).

6



Furthermore, y2(tlst 2 ) can be consistently estimated from the data.

(ii) Under A4 and AS we have as nB

A-X tB_ B) -). N(O,A).

Furthermore, A can be consistently estimated from the data.

(iii) Under A3-AS we have as nB 0

d

/nB (UAB(t1,t2)- UAB(tlt 2), AA- A, BXB) N(0,Z(tl,t 2)).

Furthermore, £(tlt 2 ) can be consistently estimated from the data.

PROOF.

(i) We begin by showing asymptotic normality. Let U' and U. be defined by1 1

U; = A I{AjE(B +tlB + t)) I{BAj<Bn}
S .i i 2 n B

and

U - I {A.E(B.i  ,Bi +t 2)

iij=_ 1+il

Note that

U(tt) -- I . (17)
ABl'2) B i=l

n B nB

It is clear that Z U. -i U- = 0 (1). Thus, it suffices to prove the result with=l i l 1 pi 

U.'s instead of U's in (17). Observe that the sequence {U. _ is stationary,
1 1. 1 J=-0

with mean UAB(tlt 2 ) and finite variance (by A3). The Ut 's may be far from indepen-

dent: for small k, Ui and Ui+ k may be nearly identical. If, however, Ui and Ui+ k

are "nearly independent" for large k, then one can still hope to have a Central

Limit Theorem effect. The proof consists of translating Al, the mixing condition on

the point process, into a mixing condition on {Ui } that allows the application of an

appropriate central limit theorem for stationary sequences.
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Let u(k) be defined for k = 1, 2, ... by

vi(k) = sup{IP(E1 nE2)- P(E1 )P(E 2 )j; El eo(... U_, UO), E2 c OCUk, Uk+.l. )} (18)

(Here, a(... U, U0) denotes the a-field generated by {...,U_,U 0 }, and similarly for

o(Uk,Uk+l,...)). The function u(.) is called the mixing coefficient of the sequence

{Ui}. Our goal is to prove that [ [P(k)] < -. It will be more convenient however,
G k=1

to show instead that I E(2k)]' < -. The two conditions are equivalent since v(-)
k=l

is nonincreasing.

Let k-1 be fixed, let E1  a G(..., U_k, E2 E a(Uk,...), and consider P(ElnE 2).

Let

C_k = {Bk- B0 -s- [k(8+l)} and Ck = {Bk-B 0  [kI/ P+l)I}

We may write

P(E nE 2) = P{(EnCk) n (E2nCk)I + P{(E nE 2 ) n (C kuC k) , (19)

where c denotes complementation.

Consider the first term on the right side of (19). For all large k, since

B-k - B0  0 k/(8 l) implies that Bk + t 2 - BO, we have E1 n C k c F 0 
. Furthermore,

E n Ck e F 1/( I) . Therefore,
2 0 ]+t I *

P{(E1nC_k) n (E2nCk)) } P(E1 )P(E 2 ) + a([ k' / ( 1 I + t) (20)

The second term on the right side of (19) is obviously less than or equal to

P(Cck) + P(K). These last two probabilities are dealt with in the same way.

cConsider P(Cj). Observe that

P(ci) _ P{one of the intervals (B0 +j,B0+j+l , j=0,l,...,LkI/ts+ 1'] (21)

has at least [ka / ( 6+ 1) 1 points}.
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By A2, Chebyschev's inequality and Boole's inequality, the right side of (21) is

less than or equal to [kM [k/(+l)] -  Combining this with (20) and

handling the opposite inequality in s similar way, we obtain

P(2k) : a(k 1/(B+1)+t) + k l/(B+l)MRk8/C&*I)]
-

Assumption Al implies that

I {a(k /  t1 )} < (22)
k=l

Combining (22) aid (16) we obtain that i [ (2 k)]T < , and hence that
k= 1

I Cu(k) ] T < .(23)

k=l

Assumption A3 implies in particular that

E [U2 I  r < 00.
LI I

This, together with (23) allows us to apply Theorem 18.5.3 of Ibragimov and Linnik

(1971) to conclude that for y 2(tl,t 2) defined by

y (t 1 ,t 2 ) Var U0 + 2 h C°V(U OUh) (24)
h~l

we have as n B

d 2/n B (U AB (tlt 2) U UAB(tlI't2) 4d N(0,y2(tl't 2)) "

Consider next y 2 (tl,t2. Let vh = Co,(U0, Uh ) and let vh denote the sample

covariance at lag h: n.- h-I

I (u -) (Ui+h-U)

h nB- h
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where D = OAB(tlt2). Defin..g the spectral density of {Ui by

f W i Vh cos Xh,f( )= O + h=l1

2 2t0 I -

we see that y2 (tt 2) = 27if(0). Thus, to estimate y2 (t,t 2 ) we have available the

machinery for spectral density estimation from the time series literature. Frequently

used estimates of 27rf(0) are of the form

5

v0 + 2 % vh 1  (25)
h=1

where s and cl, ..., cs are constants depending on nB, with s/nB - 0 as nB - , and5s

cI > c2  ...-> cs . The choice of s and {ch)h__ is not discussed here. For such a

discussion, see any standard text on time series (e.g. Section 7.4 of Chatfield,

1980; Chapter 9 of Anderson, 1971). Consistency results for spectral density estimates

have been established under conditions on {Ui } that are not implied by Assumptions

Al- AS (e.g. existence of all moments in Brillinger, 1975; {U.i is a linear process

as in Anderson, 1971 and in Hannan, 1970). In the appendix, it is shown that there

exists a consistent sequence of estimators of y 2(tl,t2).

(ii) Let &' 2 e R, and let

X. = &I NA(Bi-.B i) + 2(Bi-Bi-i)

The sequence {Yi}.=_. is stationary, and if w(.) denotes its mixing coefficient, it

is clear that (23) holds for w(.) as well. This gives a central limit theorem for

{Xi}, and by the Cram6r-Wold device we have that1
v'W - E N (BoB), T - B V

,- AEI(n 1  B 0

is asymptotically normal with mean 0, and a covariance matrix which can be consistently
x 1

estimated as in Part (i). Applying the delta method with the function f(x,y) = -L )
y y

we obtain that
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I rIIE IA(BIBl) 1 i a

T "E( B1-Bo) ' T - E(B1 -B o )

is asymptotically normal, and it is simple to argue that E NA(BO,B1)/E(BI-B0) = XA

and (E(B1-B0 1 = XB "

(iii) The proof of (iii) is similar to that of (ii) and is omitted.

THEOREM 2. Let K(tl,t 2) and k(tl,t 2) be defined by (3) and (5), respectively, and

assume Al-AS. Then, as nB CD

/n B (Q~tl~t 2) - K(tl It2) N(O,a2(tlit 2)) '

where a 2 can be consistently estimated from the data.

Results giving the asymptotic normality of estimates of XA and XB (under varying

sets of assumptions) already exist in the literature; see e.g. Theorem 8.6 of Daley

and Vere-Jones (1972). It was necessary to establish joint asymptotic normality of

XA and UAB(tl,t2) in order to obtain asymptotic normality of K(tlt21.

Any theorem giving asymptotic normality of the normalized partial sums of a

stationary sequence {Ti} must assume a moment condition on T1 and also a mixing

condition on (Ti}. In general, weakening of the moment condition must be compensated

by strengthening of the mixing condition, and vice versa. Assumptions A3, A4, and

AS provide moment conditions on the sequences {U i , {NA (B i- l Bi ) }, and {(B i-Bi ),

respectively. Assumption A2 insures that the B process "moves along" rapidly

enough so that Al, the mixing condition imposed on the point process, translates

into a mixing condition for the sequences (Ui} , {NA(Bil,Bi)} and {(Bi-Bi_l)}.

Relationship (16) describes in a technical way the interplay between the mixing rate

on the point process and the moment condition on the sequences {Ui}, {NA(Bi-l,Bi)},

and {(B i-B )}.

i i-l

• ,-. .... ,, ,m=,.u. m, m m um ~ 1n



The conditions assumed by Brillinger (1976) neither imply nor are implied by

Al- AS of the present paper. Brillinger assumes a mixing condition on the bivariate

point process and also that the "second order moments" A ij(.) (i,j- A,B) exist and

are continuous (he also assumes existence and continuity of the "third and fourth

order moments"; see equation (2.2) of his paper). This condition on XAB(.) is not

satisfied by the following process: NB is a Poisson process, and N A is NB shifted to

the right by 1 unit. In this case, XAB(1) = -. This process does however satisfy

Al- AS. Conversely, it is easy to find processes (NA,NB) satisfying all of Brillinger's

conditions, but not those of the present paper. Perhaps the simplest example is the

following. Let N A and NB be independent, NA being a Poisson process, and NB being

an equilibrium renewal process on (-',') (for a definition and a construction see

pp. 517-19 of Karlin and Taylor, 1975) with interarrival distribution having a first

moment but no second moment. Then A4 is violated, and it is not difficult to check

that this process satisfies all of Brillinger's conditions.

3. DISCUSSION.

The contributions of this paper are two-fold: proof of asymptotic normality of

K(tl,t 2) and a method for estimating the asymptotic variance a 2(tl,t2), enabling the

construction of asymptotic confidence intervals for K(tl,t 2), for fixed values of

t1 and t2.

The function K(*,.) will usually be of interest over a continuum of values, say

-L <- t I < t 2 !5L, where L is some number much smaller than T. One can plot K(-L,t)

d td)fofor -LstSL or, what is sometimes more useful, plot K(t-T, +T for
-L+d tL-d

-L + - !tsL . Here, d is some small number representing the experimenter's
2 2

guess at the duration or likely duration of the effect of a B point on the A process.

The function t+) is identically equal to d if NA and NB are independent.

12



We may form the bands

R(-Lt) a (-L,t)/n B  -L - t 5 L

and

K dt- - C/2) An dt)/ -L + 1 ! t 5 L - d
2 24~ 2 2(- t+JfB 22

where a(tl,t 2 ) is an estimate of a(tl,t2), and z(a/ 2) is the upper 2 • 100 percentile

point of a standard normal variable. These bands of course are not simultaneous

confidence bands. To form simultaneous confidence bands one would need to carry out

two distinct steps:

(i) establish weak convergence of the processes

VnB(t) = n-(R(-L,t) - K(-L,t))

and

W (t) Yr= (~- d +A d d~-1 d4nB B 2 2 2 2

to Gaussian processes V(t) and W(t), respectively.

(ii) obtain v a ) and w(a) , the upper a • 100 percentile points of sup IV(t)l
-L_<t-L

and sup IW(t)l, respectively.
d d_L+d--t<gL- d

2 2

The bands

K(-Lt) B v')/nF -L < t < L

and

K(t- , td) ± w(Ca)/, -L + A < t S L

are then asymptotic simultaneous confidence bands.

A proof of weak convergence appears extremely difficult. Although desirable

from a theoretical point of view, weak convergence is not useful statistically unless

the distribution of the supremum of the absolute value of the limiting process can

13



be obtained. In general this is a very difficult problem even if the Gaussian

process is stationary (see Cressie and Davis, 1981). In the case of two independent

Poisson processes weak convergence of Un (.) and WnB (-) can be established. WnB(-)

converges weakly to a stationary Gaussian process, the distribution of the supremum

of which is known. Since this distribution depends only on the two rates XA and X B

it can be estimated directly from the data. These results will be reported in a

future paper.
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APPENDIX

In this appendix it is shown that under Assumptions Al- AS, the asymptotic
variances in Theorem I can be consistently estimated. We discuss only y2(tl't 2) ;

the other asymptotic variances are handled in the same way. We emphasize that

in applications simple estimates such as those given in (25) would suffice.

Consider the sequence {U}. For an arbitrary integer n, let
nI U

Y1  i i (26)

It is well-known (and easy to see) that

Var Y= I -) v1 = Y (t 1 ,t 2 ) + e(n), where e(n) - 0 as n -- . (27)it Z<n n f- Y(lt2

If YIP Y2"' Yh are i.i.d., then

1' 2' 2.~

f (Y.-EY.)
1~ ~ 2 2 l2 (8E -y2(tI Pt 2  =_ 2(n) + .1 Var (YI-EYI . (28)

L h 2 h I I)

By A3, Var(YI-EY1)
2 is finite.

The idea is to divide the sequence Uii=. into h blocks, each of size n,

with the blocks separated by a distance f, and to let Y. be the normalized sum

of the U's in the jth block, as in (26), for j = 1, 2, ... , h; see the diagram.

U1  U2  U3  Un  Un+f U 2n+f-l

I I I"" I I I " I I I "I.......

n 2n+f-1
IU i I____

i=l Y i=n+f Y1

Diagram to describe {Y}h.
i=l

is



Then

I h -2 h
-T (Y1-iY2 where h i (29)

can be used to estimate y 2(tl,t 2). The proof consists basically of making the

following heuristics rigorous. If f is large, then by the mixing condition on

the sequence [Ui } (see (23)) the Y.'s will be nearly independent, so that equation

(28) will be approximately true; if n is large, then e(n) in (27) and (28) will

be small, and if h is large then the second term on the right side of (28) will
2

be small (note however that Var(Y1-EY1) depends on n). Also, the effect of

substituting Y for EYi in the left side of (28) should be negligible. Thus, T

converges to y 2(tl,t 2) in probability.

The numbers n = n(nB), h = h(nB) and f = f(nB) of course will depend on nB,

but in a way that is to be determined later. The dependence on nB will be

suppressed in the notation for convenience.

We begin by decomposing T given by (29) as

Ih 2 2
T h(Y iEYi)d (Y-EY1 )2. (30)=l

We will show that the first term in the right side of (30) converges to y 2(tl,t 2)

in quadratic mean (hence in probability), and that the second term in the right

side of (30) converges to 0 in mean (hence in probability).

Considering first (Y2-EY)2, we have by (27)

E L Y -EYi2Y2(tl,t2  E2 (n) + Var W (YiEYi) . (31)

Writing

V Var(Y-EY)2 and C =Cv((YE 2, (Y.-EY.) ) (32)
h 11 hij 1 1
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we have h
Var (Y.-EY) = V + C, (33)

* S.

and we examine V and C separately, beginning with V.

Bounding the variance of a random variable by its second moment and using

(26), we may write

The Minkowski inequality gives

--hn2 n EU h O(n (35)

by A3.

We now consider C in (33). If i < j are fixed and Us and Ut are summands of

n Yi and n Y, respectively, then t ' s+ f. Therefore, by Theorem 17.2.2 of

Ibragimov and Linnik (1971)

ICov((Yi-EYi) 2, (Yj-EY ) 2) < E(f) ]T L+6 EYI-EYll }j, (36)

with u(-) defined by (18). Now by the Minkowski inequality,

4(l + I ) 2(1+ -T-) 4(1 + I
EJ I 1-EY11  1 < : n TTE IR1l-ER 1 1 1- , (37)

and therefore, (36) can be rewritten as

ICov((Yi-EYi) 2, (Y.-EY 2) )I = [1(f)]TO (n). (38)

Since the sequence {[VI(f)] T I 1  is nonincreasing, we may write
f= 1

17



2 ]'' 1

? _ CiCf)) = o(l) as f (39)
k= f

by (23). We conclude that for C defined by (32),

ICI = o(C)n as f =. (40)

Consider now (Y-EY1)2 in (30). We have

E(-Y) I.

E.EY 1) 2 - 1 1 E(Y .Ey) 2 +h ' I E(Yi -EYi)(Y EY . (41)

Combining this with (27) and the argument used to produce (40), we obtain

2 2 1
E(Y-EY1  =i (Y (t1 t2 ) + c(n)) + o(-)n as f . (42)

Now let n = n(nB), h = h(nB) and f = f(nB) be sequences satisfying the

conditions

2n n
n , -remains bounded, and -_-- 0 asnB (43)

f hB

Such sequences are very easy to construct. Then the right sides of equations

(35), (40) and (42) converge to 0 as nB . This completes the proof.

18
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